# CYCLOMETALLATION REACTIONS OF $N$-(BENZYLIDENE)BENZYLAMINES WITH PALLADIUM COMPOUNDS 

JOAN ALBERT, JAUME GRANELL and JOAQUIM SALES
Departament de Quimica Inorgàntca, Facultat de Quimica, Universitat de Barcelona, Diagonal, 647, Barcelona-28 (Spain)
(Received April 17th, 1984)

## Summary

The cyclometallation of $p-\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{NO}_{2}\right)$ by $\mathrm{PdX}_{2}$ ( $\mathrm{X}=\mathrm{Cl}, \mathrm{AcO}$ ) has been studied.

In every case the cyclometallation occurs with formation of a five-membered ring containing the methine group. The structure of these compounds [PdX(p$\mathrm{RC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ )] $]_{2}$, derived from ${ }^{1} \mathrm{H}$ NMR spectra, are different from those reported previously. Reaction of these compounds with $\mathrm{PEt}_{3}$ gives the compounds $\left[\mathrm{PdX}\left(p-\mathrm{RC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right.$ ] but with an excess of $\mathrm{PPh}_{3}$ only the complexes [ $\stackrel{\left.\mathrm{PdX}\left(p-\mathrm{RC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right] \text { are formed. }}{ }$

## Introduction

Cyclometallation reactions of $N$-donor ligands, in which $\sigma$ metal-aryl bonds are formed by replacement of ortho-hydrogens by metal atoms, have attracted much attention during recent years [1,2].

The complexes so formed have been used in regiospecific organic syntheses [3,4], as well as in the synthesis of carbene complexes [5] and of several new compounds with metal-metal bonds [6].

According to Cope's rules [7], the formation of a five-membered ring is specially favoured with N -donor ligands, but some six-membered cyclometallated compounds have been reported recently [8,9]. An electrophilic substitution mechanism has been proposed for the palladiation of many $N$-donors ligands, after the coordination of the ligand to the metal [10], but, on the other hand, reactions in $\left[\mathrm{Mn}(\mathrm{Me})(\mathrm{CO})_{5}\right.$ ] complexes appear to involve nucleophilic substitution [11].

The cyclopalladiation of $N$-(benzylidene)benzylamine ligands could "theoretically" lead to two different palladium(II)-imine complexes having the general structures A or B shown in Fig. 1, both of which contain a five-membered ring.

Thomson and Heck proposed the $B$ structure $\left[(\mathrm{AcO}) \mathrm{Pd}_{( }\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{~N}=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}$ $(\mathrm{R}=\mathrm{H}$ or Me$)$ for the compounds obtained by the reaction of $\mathrm{Pd}(\mathrm{AcO})_{2}$ with the
imines [12], while Dehand et al. obtained $\left[\mathrm{ClPd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Me})=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}$, with structure A , by the treatment of $\left[\mathrm{PdCl}_{2}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$ with PhCOMe [13].

Following our studies on cyclometallation reactions of $N$-donor ligands [14,15], we have investigated the action of $\mathrm{PdX}_{2}(\mathrm{X}=\mathrm{Cl}$ or AcO$)$ on the $N$ (benzylidene)benzylamines $p-\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{NO}_{2}\right)$ in order to check which phenyl ring is metallated, and to study the effect of the substituents in the para-position on the mechanism of this reaction.

## Results and discussion

The action of $\mathrm{PdX}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{AcO})$ on the imines $p-\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, where $\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{NO}_{2}$, ( $\mathrm{I}, \mathrm{b}, \mathrm{c}$ ) was examined in anhydrous AcOH under reflux for $20-45 \mathrm{~min}$. The structure $\left[\mathrm{PdX}\left(p-\mathrm{RC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}$ (IIa,b,c) is formed with all three imines, but the yields are lower when $\mathrm{PdCl}_{2}$ is used since $\mathrm{Pd}^{0}$ is also formed. These results agree with the better ability of $\mathrm{Pd}(\mathrm{AcO})_{2}$ to cyclometallated $N$-donor ligands [16].

The ${ }^{1} H$ NMR spectra of the compounds II are too complex for use in determining the structure for these compounds, but the mononuclear complexes obtained when the compounds II were treated with phosphines can be easily characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy, so it is possible to derive their structures.

The addition of an excess of $\mathrm{PEt}_{3}$ to acetone solutions of the complexes II in the presence of LiBr gives $\left[\mathrm{PdBr}\left(p-\mathrm{RC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]$ (IIa,b,c). Decom-

$\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{NO}_{2}$
Fig. 1. Possible structures for palladium(1)-mine complexes.

(I)

(II)

(III)

Fig. 2. Structures of compounds I-III.
position occurs in absence of LiBr and it is not possible to obtain the complexes $\left[\mathrm{Pd}(\mathrm{AcO})\left(p-\mathrm{RC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]$. The use of an excess of $\mathrm{PPh}_{3}$ gives only the cyclometallated compounds [ $\left.\mathrm{PdX}\left(p-\mathrm{RC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right]$, and this difference in behaviour can be accounted for by the greater basicity and nucleophilic character of $\mathrm{PEt}_{3}$, relative to $\mathrm{PPh}_{3}$, which enables it to breaks the $\mathrm{Pd}-\mathrm{N}$ bond. In the analogous cyclopalladated compounds $\left[\mathrm{PdX}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NC}_{6} \mathrm{H}_{5}\right)\right]_{2}$ with the less basic $N$-benzylideneaniline ligand, $\mathrm{PPh}_{3}$ gives the compounds [ $\mathrm{PdX}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ ] with two phosphine ligands [17].

The ${ }^{1} \mathrm{H}$ NMR spectra of III (see below) show that the $N$-(benzylidene)benzylamines have been metallated to give a type A ring (see Fig. 1), i.e. the rings which have been formed contain the methine group in every case, contrary to Thomson and Heck's proposal. Even the imine Ic, with an $\mathrm{NO}_{2}$ substituent which deactivates the aromatic ring to electrophilic attack, give the cyclometallated compound with the A ring.

Since compounds with the $B$ ring are obtained from benzylamines, these results may be explained in terms of the formation of a 5-membered aromatic ring involving the two conjugated double bonds of the ( $-\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{N}-$ ) system and the filled palladium $d$ orbitals of appropriate symmetry [18].

The existence of 5 -membered aromatic rings had previously been proposed by Crociani et al. [19] to explain the value of $\nu(\mathrm{Pd}-\mathrm{Cl})$ in the IR spectra of the cyclopalladated compounds $[\mathrm{PdCl}(\mathrm{C}-\mathrm{N})]_{2}$ where $\mathrm{C}-\mathrm{N}=$ azobenzene or $N, N$-methylbenzylamine.

Similar results have been found in the cyclometallated derivatives of hydrazones (see Fig. 3). With $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}(\mathrm{Me}) \mathrm{N}=\mathrm{CHR}(\mathrm{R}=\mathrm{H}$, Me) B-rings are formed in giving $\left[\mathrm{PdX}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}(\mathrm{Me}) \mathrm{N}=\mathrm{CHR}\right)\right]_{2}$ [12], but with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{Me})=\mathrm{NNHC}_{6} \mathrm{H}_{5}$ only A-rings are obtained in $\left[\stackrel{\left.\mathrm{PdX}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{Me})=\mathrm{N} N \mathrm{NC}_{6} \mathrm{H}_{5}\right)\right]_{2} \text {, although five membered B-rings }}{ }\right.$ could also be formed [13].

## Characterization of compounds

The new compounds are pale yellow solids which are stable to air. The $\mathrm{PPh}_{3}$-containing compounds (IV) are sparingly soluble in the common organic solvents, but the $\mathrm{PEt}_{3}$-containing compounds III are quite soluble in all common organic solvents. The cyclometallated compounds II are quite soluble in chloroform, acetone and benzene, and slightly soluble in ethanol and diethyl ether.

The analytical data and decomposition temperatures are shown in Table 1. The



Fig. 3. Possible structures for cyclometallated derivatives of hydrazones.
low values of the molar conductivity in anhydrous acetone ( $10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution) at $20^{\circ} \mathrm{C}$ show the non-electrolytic character of these compounds. Their diamagnetic behaviour suggests a square-planar arrangement of the ligands surrounding the palladium atoms.

The IR spectra show the typical bands of co-ordinated phosphines and imines. The compounds II show two bands at 1580 and $1420 \mathrm{~cm}^{-1}$ which are characteristic of the bridging acetate ligand. The wavenumbers corresponding to $\nu_{a \operatorname{arm}}(\mathrm{C}=\mathrm{N})$ are included in Table 1, these values being smaller than those corresponding to free imines (c.a. $1650 \mathrm{~cm}^{-1}$ ). It should be noted that $\mu\left(\mathrm{C}=\mathrm{N}\right.$ ) appears at $1630 \mathrm{~cm}^{-1}$ in compounds with $\mathrm{Pd}-\mathrm{N}$ bonds in agreement with the expected bond order decrease due to the nitrogen coordination, whereas in compounds III, in which there are apparently no $\mathrm{Pd}-\mathrm{N}$ bonds, the analogous signals appear at $1635-40 \mathrm{~cm}^{-1}$, suggesting that there is some degree of interaction between these atoms, as has been found in analogous compounds [14].

The ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectra ( 60 MHz ) of the compounds II and III in $\mathrm{CDCl}_{3}$ solution are reported in Table 2. In the ${ }^{1} \mathrm{H}$ NMR spectrum of IIa ( 200 MHz ) the azomethine proton gives a singlet 7.4 ppm downfield of that of the free imine. This shift would result from the expected decrease in bond order due to the nitrogen coordination, and agrees with the shifts reported for analogous cyclometallated compounds [17].

In the spectra of IIa, recorded by Thomson and Heck [12], the peaks of the azomethine and aromatic protons overlap.

The methylene protons are not equivalent because of the $\mathrm{Pd}-\mathrm{N}$ bond and the fact that free rotation around the $\mathrm{N}-\mathrm{CH}_{2}$ bond is hindered. These protons appear as two doublets at $\delta 4.0$ and 4.6 ppm . Moreover every signal appears as doublet probably due to the coupling with azomethine protons ( $\left.{ }^{4} J\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right) 1.0 \mathrm{~Hz}\right)$.

The acetate protons are observed as a singlet at 2.1 ppm , indicating that the cyclometallated dimers have a trans configuration.

In the spectra of $\mathrm{PEt}_{3}$-containing compounds II , the azomethine protons are shifted downfield relative to the free imines because of the paramagnetic anisotropy of the metal, indicating the close vicinity of the azomethine proton and the

TABLE 1
ANALYTICAL DATA, MELTING POINTS AND IR DATA FOR COMPLEXES II-IV

| Compound | X | Analysis (Found(calcd.)(\%)) |  |  | M.p. ( ${ }^{\circ} \mathrm{C}$ ) | IR$\begin{aligned} & \nu_{\text {asym }}(\mathrm{C}=\mathrm{N}) \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | C | H | N |  |  |
| ILa | AcO | 53.5(53.42) | 4.2(4.17) | 3.8(3.89) | 190-204 * |  |
| 11 b | AcO | 48.9(48.74) | 3.5(3.55) | 3.5(3.55) | 202-204 ${ }^{\text {* }}$ |  |
| IIc | AcO | 47.7(47.50) | 3.4(3.46) | 6.8(6.92) |  |  |
| IIc | Cl | 44.6(44.11) | 2.9(2.89) | 7.3(7.35) | 260-264 | 1620 |
| IHa | Br | 51.4(50.62) | 7.0(6.81) | 2.1(2.27) | 88 | 1635 |
| 111 b | Cl | 50.6(51.45) | 6.6(6.72) | 2.2(2.31) | 100-105 | 1640 |
| IIIC | Cl | 50.8(50.57) | 6.5(6.65) | 4.3(4.34) | 72-82 | 1630 |
| IVa | Br | 60.0(59.78) | 4.3(4.20) | 2.2(2.18) | 214-216 ${ }^{\text {a }}$ | 1630 |
| IVb | Cl | 60.9(60.72) | 4.1(4.11) | 2.5(2.21) | $220221{ }^{\circ}$ | 1640 |
| IVb | Br | 56.8(56.74) | 3.9(3.84) | $2.12 .07)$ | 242-244 ${ }^{\text {a }}$ | 1630 |
| IVC | Br | 54.5(55.87) | 3.7(3.78) | 3.8(4.07) | 244-246 ${ }^{\text {a }}$ | 1630 |

[^0]TABLE 2
${ }^{1} \mathrm{H}$ NMR DATA ${ }^{4}$ FOR THE COMPOUNDS I. II AND III IN $\mathrm{CDCl}_{3}$

| Compound | X | $\mathrm{HC}=\mathrm{N}$ | Aromatic protons |  | $\mathrm{CH}_{3} \mathrm{COO}$ | $\mathrm{CH}_{2}-\mathrm{N}$ | $\mathrm{CH}_{2}-\mathrm{P}$ | $\mathrm{CH}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{Ph}-\mathrm{CH}=\mathrm{N}$ | $\mathrm{Ph}-\mathrm{CH}_{2}$ |  |  |  |  |
| Ia |  | 8.2(s) | $7.6(\mathrm{~m}), 7.3(\mathrm{~m})$ | 7.2(s) |  | 4.7(s) |  |  |
| Ib |  | 8.2(s) | $7.6(\mathrm{~d})\left(\mathrm{H}_{1}, \mathrm{H}_{4}\right)^{\text {b }}, 7.2(\mathrm{~d})\left(\mathrm{H}_{2}, \mathrm{H}_{3}\right)^{b}$ | 7.2(s) |  | 4.7(s) |  |  |
| Ic |  | 8.2(s) | $8.1(\mathrm{~d})\left(\mathrm{H}_{2}, \mathrm{H}_{3}\right)^{h}, 7^{\prime} 8(\mathrm{~d})\left(\mathrm{H}_{1}, \mathrm{H}_{4}\right)^{h}$ | 7.2(s) |  | 4.7(s) |  |  |
| ILa' | AcO |  | 6.8-7.4(br.m) |  | 2.0(s) | 4.0(d).4.6(d) |  |  |
| IIb | AcO |  | 6.8-7.3(br.m) |  | 2.1(s) | 4.0(d).4.6(d) |  |  |
| IIIa | Br | 9.1(s) | 7.3-6.8(br.m) | 7.2(s) |  | 4.7(s) | 1.6(m) | 1.0(q) |
| IIIb | Cl | 9.0(s) | $7.8(\mathrm{~d})\left(\mathrm{H}_{3}\right)^{h}, 7.3(\mathrm{~s})\left(\mathrm{H}_{1}\right), 6.8(\mathrm{~d})\left(\mathrm{H}_{2}\right)^{h}$ | 7.2(s) |  | 4.7(s) | 1.6 (m) | $1.0(\mathrm{q})$ |
| IIIc | Cl | 9.1(s) | 8.1( s$)\left(\mathrm{H}_{1}\right), 7.9(\mathrm{~d})\left(\mathrm{H}_{3}\right)^{b}, 7.6(\mathrm{~d})\left(\mathrm{H}_{2}\right)^{b}$ | 7.2(s) |  | 4.7(s) | 1.6(m) | $1.0(\mathrm{q})$ |

${ }^{a}$ In $\mathrm{CDCl}_{3}$, chemical shifts in ppm with respect to internal $\mathrm{SiMe}_{4}$, Recorded with a 60 MHz spectrometer. ${ }^{6}{ }^{3} J\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right) 8.0 \mathrm{~Hz}$. ${ }^{6}$ For 200 MHz spectrum, see text.
palladium and confirming that the metallation has occurred in the A-ring.
The metallation of this ring is also confirmed by the unequivocal assignments of the aromatic protons of the compounds $\left[\mathrm{PdX}\left(p-\mathrm{RC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]$ where $\mathrm{R}=\mathrm{Cl}, \mathrm{NO}_{2}$ (see Table 2).

The formation of ring A has also been confirmed by the signal at $\delta 7.2$ due to the five aromatics protons of the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$ group, and by the fact that the aromatic regions of the spectra are identical with those reported for $[\mathrm{PdX}(p-$ $\left.\mathrm{RC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NC}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}$ ] [20]. The methylene protons appear as singlets at $\delta 4.7$ in accordance with the free rotation around the $\mathrm{CH}_{2}-\mathrm{N}$ bond in these compounds.

As far as the $\mathrm{PdCl}\left(\mathrm{PEt}_{3}\right)_{2}$ group itself is concerned, the methyl signals appear as quintuplets which is characteristic of a trans arrangement of the two phosphines, due to so-called " virtual coupling" [21].

## Experimental

The NMR spectra were obtained on Hitachi-Perkin Elmer R-24B ( ${ }^{1} \mathrm{H}, 60 \mathrm{MHz}$ ) and Varian XL ( ${ }^{1} \mathrm{H}, 200 \mathrm{MHz}$ ) spectrometers. The IR spectra were recorded on a Beckman IR-20A, using KBr discs. Microanalyses were performed by the Institut de Química Bio-Orgànica de Barcelona (C.S.I.C.).

## Materials and syntheses

Solvents were dried and destilled before use. The imines $p-\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ ( $\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{NO}_{2}$ ) were prepared according to published methods [22].
$\left[\mathrm{Pd}(\mathrm{AcO})\left(p-\mathrm{RC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}(I I)$. A stirred suspension of $\mathrm{Pd}(\mathrm{AcO})_{2}$ $(1.0 \mathrm{~g}, 4.4 \mathrm{mmol})$ in anhydrous acetic acid $\left(30 \mathrm{~cm}^{3}\right)$ was treated with an excess of the imine ( 8.8 mmol ) and refluxed for 1 h . The suspension was cooled and filtered off. The filtrate was concentrated in vacuo and the solid residue obtained after the addition of EtOH was purified by column chromatography over silica gel, with $\mathrm{CHCl} 1_{3}$ as the eluent, to give II in $30-40 \%$ yield
$\left[\mathrm{Pd}(\mathrm{Cl})\left(\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}$. A stirred suspension in acetic acid (30 $\mathrm{cm}^{3}$ ) of $\mathrm{PdCl}_{2}(1.1 \mathrm{~g}, 6 \mathrm{mmol})$ was treated with an excess of the imine ( $2.8 \mathrm{~g}, 12$ mmol ) and refluxed for 1 h . The suspension was cooled and the precipitate filtered off and washed with water, ethanol and ether. The solid, contained the compound $\left[\mathrm{PdCl}\left(p-\mathrm{ClC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}$, and was used without further purification in subsequent reactions.
$\left[\widehat{\left.\mathrm{PdCl}\left(p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2} . \quad \text { To a stirred suspension of }[\mathrm{Pd}(\mathrm{AcO})(p-}\right.$ $\left.\left.\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH=}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}(0.57 \mathrm{~g}, 0.7 \mathrm{mmol})$ in ethanol, $\mathrm{KCl}(0.11 \mathrm{~g}, 1.4$ mmol) was added. The mixture was refluxed for 30 min . The resulting yellow precipitate was filtered and washed with water, ethanol and ether to give the expected compound in $70 \%$ yield.
$\left[\mathrm{PdX}\left(p-\mathrm{RC}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]$ (III). A mixture of $\left[\overline{\mathrm{PdX}\left(p-\mathrm{RC}_{6}\right.}{ }^{-}\right.$ $\widetilde{\left.\left.\mathrm{H}_{3} \mathrm{CH}=\mathrm{N} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}(0.2 \mathrm{mmol}), \mathrm{PEt}_{3}(0.8 \mathrm{mmol}) \text { and } \mathrm{LiBr}(0.07 \mathrm{~g}, 0.8 \mathrm{mmol}) \text { if } \mathrm{m}}$ $\mathrm{X}=\mathrm{AcO}$, in acetone ( $30 \mathrm{~cm}^{3}$ ), was refluxed under nitrogen for 30 min and then filtered. The filtrate was concentrated in vacuo. The compounds (III) were precipitated on adding ethanol. Yield $50 \%$.
 $\left.\left.\mathrm{H}_{3} \mathrm{CH}=\mathrm{NCH},_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}(0.4 \mathrm{mmol}), \mathrm{PPh}_{3}(0.21 \mathrm{~g}, 0.8 \mathrm{mmol})$ and $\operatorname{LiBr}(0.07 \mathrm{~g}, 0.8$ mmol ) if $\mathrm{X}=\mathrm{AcO}$, in acetone ( $30 \mathrm{~cm}^{3}$ ) was refluxed for 30 min . The precipitate which formed was filtered off and recrystallized from $\mathrm{CHCl}_{3}$ to give IV in $80 \%$ yield.

## References

1 M.I. Bruce, Angew. Chem., Int. Ed. Engl., 16 (1977) 73.
2 I. Omae, Chem. Rev., 79 (1979) 289.
3 S.I. Murahashi, Y. Tamba, M. Yamamura and N. Yoshimura, J. Org. Chem., 43 (1978) 4099.
4 H. Horino and N. Inoue, J. Org. Chem., 46 (1981) 4416.
5 K. Hiraki, M. Onishi and K. Sugino, J. Organomet. Chem., 171 (1979) 50.
6 G. LeBorgne, S.E. Bouadud, J. Grandjean, P. Braustein, J. Dehand and M. Pfeffer, J. Organomet. Chem., 136 (1977) 375.
7 A.C. Cope and E.C. Friedrich, J. Am. Chem. Soc., 90 (1968) 909.
8 K. Gehring, M. Hugentobler, A.J. Klaus and P. Rys, Inorg. Chem., 21 (1982) 2493.
9 M. Nonoyama, Transition Met. Chem., 7 (1982) 281.
10 G.W. Parshall, Acc. Chem. Res., 3 (1970) 139.
11 M.I. Bruce, M.Z. Izqbal and F.G.A. Stone, J. Chem. Soc. (A), (1970) 3204.
12 J.M. Thomson and R.F. Heck, J. Org. Chem., 40 (1975) 2667.
13 J. Dehand, J. Jordanov and M. Pfeffer, J. Chem. Soc., Dalton Trans., (1976) 1553.
14 J. Granell, J. Sales, J. Vilarrasa, J.P. Declerq, G. German, C. Miravitlles and X. Solans, J. Chem. Soc., Dalton Trans., (1983) 2441.
15 J. Granell, J. Sales and J. Vilarrasa, Trans. Met. Chem., in press.
16 C. Mutet and M. Pfeffer, J. Organomet. Chem., 171 (1979) C34.
17 H. Onoue and I. Moritani, J. Organomet. Chem., 43 (1972) 431.
18 P. Haake and P.A. Cronin, Inorg. Chem., 2 (1963) 879.
19 B. Crociani, T. Boschi, R. Pietropaolo and U. Belluco, J. Chem. Soc. (A), (1970) 531.
20 Unpublished results.
21 R.G. Miller, R.D. Stauffer and D.R. Fahey, J. Am. Chem. Soc., 92 (1974) 1003.
22 L.A. Bigelow and H. Eatough, in A.H. Blatt (Ed.), Organic Syntheses, Coll. Vol. 1, Wiley, New York, 2nd edn. 1944, p. 80.


[^0]:    ${ }^{4}$ With decomposition.

